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ABSTRACT

A reverberation model based on the parabolic approximation is developed that
includes sediment interface and volume perturbations. A multiple forward/single
backscatter approximation is made, and the structure of the solution is found to depend
on the two-way propagation with a scattering strength scaling dependent on the local
properties of the perturbation. The model is implemented for continuous wave (CW)
signals to predict mean reverberation pressure levels and for broadband pulse signals to
generate complex reverberation structures in the time-domain. The spatial correlation and
statistical properties of these predicted signals are then analyzed in an attempt to extract
information on the underlying characteristics of the perturbation. Preliminary analysis
suggests that reverberation due to the volume perturbations decorrelates more rapidly
over depth than the reverberation due to interface fluctuations, although the differences
appear small. Additionally, the statistical character of the reverberation structure due to
the interface appears as a relatively flat spectrum, while the spectrum of the volume
reverberation tends to appear colored. Attempts to correlate these characteristics with the

structure of the perturbations is ongoing.
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I.  INTRODUCTION

In 1993, the Office of Naval Research (ONR) sponsored a reverberation program,
the Acoustic Reverberation Special Research Program (ARSRP), to study the primary
causes and nature of acoustic reverberation in the deep ocean. The region studied was
near the Mid-Atlantic Ridge, an area where bottom characteristics are dominated by
highly variable topography and hard, basaltic rock structures (Tucholke, et al, 1993a aﬁd
1993b). The dominant feature contributing to long-range reverberation was then the
water/bottom interface. Furthermore, the general structure of the reverberation signal was
. found to correlate quite well with the forward propagation (Smitl"n, et al., 1996, and
Makris, et al., 1994), i.e. high reverberation returns were found to occur where energy

interacted strongly with the bottom.

Previous analysis with a broadband parabolic equation (PE) model has shown
good agreement with predicted arrival time structures due to deep-ocean bottom interface
reverberation (Smith and Cushman, 1997). Application of this approach for both single
frequency (CW) and broadband pulse propagation calculations showed good agreement
with measured data. In addition, the broadband reverberation predictions indicated that
some features of the reverberation signal required the discrimination of multipath

propagation in order to fully resolve the structure, particularly in CW shadow zones.

A reverberation experiment is now being organized by ONR in the littoral regions
- of the East and South China Seas called ASIAEX. In contrast to the previous deep ocean
regions studied, this area has a much smoother and softer water/bottom interface. It is
unclear at this point whether the dominant mechanism for bottom reverberation will be
interface roughness or volume inhomogeneities in the sediment. One may expect that the
measured reverberation will contain statistical information related to the character of the

scattering mechanism. However, the reverberation signal from the sediment volume may




- be affected by forward scatter from the interface and vice-versa, thereby complicating the

distinction of the dominant mechanism.

The purpose of the present work is to establish a model for predicting the
influence of propagation on both interface and volume reverberation in a shallow water
environment. This model is similar to the previous PEREV model (Tappert and Ryan,
1989), although it formally treats the scattering influence in the context of the PE

approximation. It is further expanded to treat volume scattering.

Starting with based on the Monterey-Miami Parabolic Equation (MMPE)
propagation model developed by Smith and Tappert (1994) and Smith (2000), bottom
interface and sediment sound speed perturbations were incorporated and broadband and
CW analysis conducted. The theoretical basis of reverberation due to the bottom interface
and bottom volume is developed in Chapter II. Specifically, we were able to use a CW
one-way propagation model to show that the reverberant field is the coupling of two, one-
way propagations. The theoretical basis for reverberation was expanded to time-domain
analysis for both the interface and volume in order to provide simulation for pulsed
propagation. In this method, it was shown that the two, one-way propagations from the
source to the scattering patch and from the receiver to the scattering patch would give the
reverberation field by convolution of both fields in time. Chapter II also details the
models used for generating realizations based on statistically controlled random
fluctuations for the interface and volume, and offer a practical implementation that was
incorporated into the MMPE model. This new model is known as MMPEREV (see
Chapter III).

Secondly, after incorporating random fluctuations of pertinent parameters into the
MMPE model, post-processing analysis of these results in MATLAB was performed.
Chapter IV describes the post-processing and signal processing implemented in
MATLAB and provides a visual presentation of the effects of reverberation. A single set
of environmental parameters was used in all the simulations to afford a controlled

computation of the effects of reverberation, providing a qualitative description of the
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analysis. Comparisons between perturbed and unperturbed data were conducted and

detailed in Chapter IV. Post-processing and signal analysis included:
e time-domain analysis and comparison with unperturbed results;
e CW analysis and comparison with unperturbed results;
e temporal and range peak auto- and cross-correlations in depth;
e spectral analyses of the reverberation and reverberation loss.

This model will serve as a tool for understanding propagation influences in future

reverberation experiments.
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II. THE REVERBERATION PROBLEM - SHALLOW WATER
REVERBERATION AND SCATTERING THEORY

In this chapter, we present a theoretical treatment of the effects of bottom
reverberation and scattering. We acknowledge that in shallow water, the effects of
reverberation are more involved due to the thin layer of water and the somewhat invariant
sound speed profile in the water column. However, perturbations to the interface and
sediment volume (hereafter known as just the ‘volume’) exist and may be modeled
statistically. These will be treated in detail. One element lacking at this point is the study
into density variabilities in the volume. Implementation for density variability will form

part of the scope of follow-on work, which is discussed in Chapter V.

The interface and volume perturbations may be treated separately because of the
nature of their pertu:bations — the interface primarily being perturbed spatially while the
volume variabilities involve both the sound speed and density. In order to effectively
model their total effects, all interface and volume perturbations must be jointly
incorporated into the model at the same time. This has been integrated into the MMPE
Model developed by Smith, 2000 (originally known as the UMPE Model developed by
Smith and Tappert, 1994). ‘

A. BOTTOM INTERFACE SCATTERING

We begin with the standard wave equation, also known as the Helmholtz wave

equation. It is written for acoustic pressure, p, as

V2p+kinp=0 @.1)
with the following definitions for wavenumber and index of refraction, including the

reference sound speed,

k,=wlc, and n(x)=c,/c(x). 22)




Now, consider a rough bottom where the spatial fluctuations may be defined

statistically. The boundary between the water column and the bottom is then defined by,

n2=nfv(l—H(z—zb))+n,fH(z—z,,), 2.3)
where n; and n, represent the spatially varying indices of refraction in the water column

and bottom (volume), respectively, and z5 is the bathymetric depth at the interface. The

definition of the Heaviside step function used at the water/bottom interface is given by

1, z>0 5
H@={Y,, 2=0 ,and SH@)=50). 24)
0, z<0

We treat the influence of the roughness of the bottom interface by introducing
perturbations to the bottom depth of varying length scales. This is akin to the method of
small perturbations (MSP) found in Brekhovskikh and Lysanov (1990). More

specifically, we define

z,(F)=7,(F) + () +n,(7), 2.5)
where Z,(7)is the deterministic portion of the bathymetry as a function of horizontal
range, 7 . The deterministic part of the bathymetry may also be seen as the mean depth on
a relatively flat portion .of the seabed. Correspondingly, #,(F) is the long-wavelength
portion of the randomly generated roughness comprising a spectrum of roughness, while
n,(r) is the short-wavelength component, also ' generated randomly. The short-
wavelength components are assumed to be the components generating scatter, thereby
responsible for reverberation, predominantly at the Bragg wavenumber. The short
wavelength components may be thought of as the easily observeable variability of the
seafloor, i.e. loose impediments and small mounts. The longer wavelengths are then the

larger undulations. Hence, it is reasonable to think of a ‘critical’ or ‘limiting’

wavenumber separating these two components. This critical or limiting wavenumber is

‘assumed to be approximately, k, z%koﬁf, where 6. is the critical angle of




propagation, and smaller roughness wavenumbers (i.e. longer wavelengths) are assumed

to dominate the forward scatter properties of the acoustic field.

Performing a Taylor series expansion of the Heaviside Step function we have

defined in Eq. (2.4), we can then re-write the original Helmholtz equation, Eq. (2.1), as

Vip+ki(A*+u)p=0 (2.62)
where
A2 =n2(1-H(z-7,-n))+n H(z-Z, /) (2.6b)
and
u(7,z)=m2-n2m.6(z-7,-n,). (2.6¢)

This shows that the primary part of the propagation is due to the long-wavelength
components and the perturbation is due to the small wavelength components. The small-
scale features previously expressed as 77,(¥) are considered to introduce secondary cross-
terms- whose contribution will bé small and may thus be ignored. From hereon, ignoring
the short—waveléngth components will introduce an approximation to the theoretical
development and variables will then be “hatted” to denote the use of only long-

wavelength perturbations, e.g., the approximate refractive index, 7.

We now express the wave equation in cylindrical coordinates as

19( 8,19 2 . |
[75(7'87)4';?—8—52—*'&7}[7'*](02 (n2 +u)p=0. 2.7

1
Now let p=——u, then
Jr

2 2 2
g:: +—r1—2- g;; + gzl: +k2(A*+ wu=0. (2.8)

Next, we define the Q operator as




1(1 9* 0 |
P (RS ) @9
. \/ K\ 7o o
: 2
In general, the azimuthal coupling is ignored in a N x2D model by neglecting the —

0’
term. The influence of azimuthal coupling may be expectéd to be of second order, so the

neglect of such influences here is consistent with the treatment of small perturbations.

The wave equation now becomes

%mzu =0. (2.10)
r

Defining u in terms of its incoming and outgoing components, Tappert (1977) showed

that we may write it in the form

1 ou
= F ik - . (2.11)
u @(u++u_) , and > ikoA/Q(u, —u_)

The wave equations defining the evolutions of the outgoing and incoming fields can then

be shown to satisfy

du, = ik,Qu, +la—Qu_ , and 9. =~ —ik,Qu_ +lig-u+. (2.12)

or 2 or or 2 or

This shows how the fields form a set of coupled, one-way parabolic wave equations.

Since the employment of an operator, Q, is not algebraic and therefore
inconvenient, we invoke the wide-angle parabolic approximation (Thomson and

Chapman, 1983) and define Qware,

2
0=0yp = /1+%§—22 +I:(n2+,u)%—l} (2.13)
0

We can re-write it in terms of a Hamiltonian differential operator, H,,,:,

2
QWAPE =1~(T +U) =1- HWAPE(r9 Zggaz—2) ’ (2143)




where,

2

HW,,,,E(r, z,ga-z-J=T+U (2.14b)
Z

is written in terms of kinetic and potential operators,

1 0 2.14
T = 1— 1+-—;‘—2 ( . C)
ky 0z
‘and
U= —[(ﬁ2 +u)? —1} . (2.14d)
Since we expect 4 to be small,
U=—(ﬁ+—1—4—1)=(7(r,z)—l£f- : 2.15)
2n 2 n
where we have also defined
U(r,2)=~(A(r,2)~1) (2.16)
as the unperturbed potential function. Equation (2.14a) then becomes
A 0. 1u(rz
Ouupe =1 Hypp (1,2, )+“'u( ) 2.17)

922" 2 A(r,2)

2
since HWAPE(r,z,é—Z) =(T+U).
<

_a_Q_zaQWAPE - 1 du
" or or 27 or

4. Then, the evolution of the outgoing and incoming fields from Eq. (2.12) becomes

Now

since the strongest range dependence is assumed in

ou, = ikou, _ikOﬁWAPEu+ +"1_Aa_'uu- , and (2.182)
or 47 or
e+ ik Hypgt. +— o, (2.18b)
or 47 or

From Eq. (2.18a) and (2.18b), the two fields are seen to couple through the third term on

the right-hand-side of each equation. We now invoke the multiple-forward-single-
9




backscatter approximation. This assumes that the forward propagation can only scatter
into the backward (reverberant) propagation direction once. Since energy initially only

propagates outward, that is, only u, exists, it is reasonable that this will contribute to u_.

This is seen in Eq. (2.18b) through the scattering term %E-u+. With the single-
r

backscatter approximation, we then say that the secondary scatter influence on u, by

%—’L-l-u_ in Eq. (2.18a) is negligible. Thus, the forward propagation is assumed to be
r

unaffected by the small scale perturbations. The influence of 4 is only to generate source

terms for the backscattered field.

1. Forward Propagation

ikor

We can now obtain u, by defining u, =ye™ so that Eq. (2.18a) (ignoring the

ia-‘L—lu_ term) becomes

or
W h ye (2.19)
5, + ik Hype¥ =0, .

which defines the evolution of the forward propagating PE field function . The solution
to this equation is obtained from the MMPE model with the long wavelength fluctuations

built into 72.

2. Backward Propagation

In similar fashion to the forward propagation problem, we define an incoming

field function, u_ = de , so that Eq. (2.18b) now becomes

o> . 1 du
R o+
or "o 47 or’

noting that the second term on the right-hand side is the forward coupling term previously

e ye™ (2.202)

derived. The forward coupling term 1, is identified as the inhomogeneous term in our

solution for @,

- 10




1 Of iyen)
1o LB s (2.20b)
o

Recall that i and @ are the field functions of the two-way propagation with the
long wavelength components built-in. The inhomogeneous term, I, then defines the
coupling from scattering due to the short wavelength perturbations. In the next
subsection, we will introduce the point source and then cast the incoming and outgoing
fields into the form of the sonar equation and see the two-way coupling contributions

likened to transmission losses but with a wave scattering strength.

3. Forcing Function
Up till now, we have only dealt with the homogeneous wave equation
Vp+kip=0, (2.21a)

with no hint of a source function. If a point source is now introduced, Eq. (2.21a)

becomes

Vip+k’p=-4nRPO(F-7;), (2.21b)
where P, is the source pressure at a reference distance R,. This may be expressed in
terms of the Green’s function, g(7,7;), which is the transfer function from a point source
to a point receiver defined by (Jensen, et al., 1994)

(V2 +kM)g(F. ) =—6(F = 7)), (2:222)
such that the pressure is

p(F,7) = 4R, R g (7.7s) - (2.22b)

Extending this argument to an extended source, we can apply the idea of superposition of

a number of point sources to say that

(V2 + k%) p(F) = f (F) = ~47R, [W(F)S (F ~ F)d’rs (2:232)
then

11




p(7;) = 47R, [ w(F,)g (7. %)d"r; C (223b)

We can also define the Green’s function alternately in terms of the PE field

function ¥ by letting

4R, g(7,7s) = %W(F,ﬁ)eik°' . (2.24)

The corresponding inhomogeneous PE field function (Eq. (2.19)) for the owtward

propagating field due to a point source becomes

aa—"r’ +ikyH gl = —AT0 \/;'—r;e"‘o’a(? -7) (2.25)

since [u/| =1 is normalized at r=R,. Similarly, the inhomogeneous form for the

scattered (or backward propagating) field is

L ik By ® =475, | (2:262)

where the inhomogeneous source term is due to the scattering of the forward propagating
field, defined by

1 Ol airr
J =y (2.26b)
1671 or’ ve

which acts like a point source function locally at the scattering point.

We now need to define some geometrical setup to aid in the understanding and

development of the effects of scatter. Defining the location of the scattering point as 7,
and the volume of the scattering region as V;, then the received scattered (backward
propagating) field at location 7, will be

p- () = 47k, [ 3(%) ri;ie”“*’?ﬁs'g("r;,fs)dars. (2.27)
Vs .

R =1

12




Since the Green’s function is the transfer function between two given points, we can say

that g(7,,7;) is the pressure field Green’s function from each point within the scattering

region to the point receiver location at 7y . By reciprocity, we say that

g(Fe,75) = g (¥, 7z . (2.28a)
Also
- - 1 o -
g(rs,rR)=Z‘”E‘OP+(rsarR), . : (228b)
then
= 1 1du ’ Ry = = = =\ ik|F7| 43
=— re, T e T dr (2.29)
p-(7z) 167R, ‘-/[ﬁ EY |’-{g _;_.RIW( 5 7p) P (T55 1) s
1 ¢lou 3
= - — ar. ,

where p,, is the forward propagated field from the transmitter to the scattering point and
p.r is the forward propagated field from the receiver to the scattering point which by

reciprocity is the same as p_,.

. : 19 a2 .
We now examine the integrand term 292 Since #? is defined in terms of the

nor
step function,

# =1 H(z-7, -n) +niH(z-2,-n) 230

then with H(0) = % the value of A at the interface is just the average value,

. 1
A*(z=1z,+M,) =5(n3 +nl). (2.31a)

Solving for 7 gives

13




1_/ 2 (2.31b)
Now

§ﬁ~(n2—nf)a—7r7s5(z—fb—~m), (2.32)

where we have ignored the slower range variations in Z,, 7,, n’

w

and n’ over the

scattering region. Substituting the expressions in Eq. (2.31b) and (2.32) into Eq. (2.29),

we obtain

ny—n, 0n, _
p.(r R)~—ﬁ'|.\/— - -H: 3 é‘(Z"Zb_771)P+Tp+1edﬁrs (2.33)

nl-nl con 2
S d’r. ,
16 R \/n +nb ;‘[a ;p+pr+Rb S

where p,;, and p,,, are the values evaluated at the bottom interface. Note that the range

derivative of 7, is in the direction from the scattering patch to the receiver.

4, Statistical Treatment of the Scattered Field

Of interest is the mean squared reverberation from different roughness
realizations, which from Eq. (2.33) is defined as

- — |a77 77; 2.7
(o)~ ey e (1 S pmpmtiofenas @20

where 7, and r{ indicate two different boundary realizations. Consider the statistical

characteristics of the roughness. We note that the small scale roughness must have zero

mean, i.e. (7,)=0 and has an amplitude spectrum of S, ,,(K,L) for a given realization,

such that

7,63 =[S, 1o (K,L)e™ e dKdL, (2.35)
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where K and L are the horizontal wavenumbers in the x- and y-directions, respectively.

Here, the amplitude spectrum, S, ,,(K,L), refers to the 2-D roughness of only the

small-scale perturbations, therefore the subscripts ‘775,2D°. The rms roughness is then

given by
()= [axdL{[aRaL’S,, p(R. LS, (K, L) FeltoD (2.36)
Assuming a wide-sense-stationary spectrum in space, then
2.37)

()= [[ axdLw, .. D),
where W, ,, (K,L)= IS%'2 (K ,L)I2 is the power spectrum. Thev spatial correlation
function for the roughness can then be defined as

(e, (x =5,y =) = [[dKAL W, . (K, L)e™ e (2.38)

Hence for a given realization,

(

07, I\ _ (f,2 iK (5-%) iL(y-5)
”a?’a—r{>“ ([, e e aKaL (2:39)

where
k,=Kcos¢ , (2.39b)
and ¢ is angle in the direction of r towards the receiver relative to the (x,y) coordinate

system. The following diagram shows the geometry being developed here.

P

/

¢ > x

/ Scatter patch
Dy

p-
Figure 2.1 — Scatter Geometry
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J‘J'< a7, (x,y) 97, (x ax Y y)i> =K (x-x) p=iL(y "}')d(x -x)d(y-Y) (2.39¢)
r

Conversely, the alternate-domain realization may be expressed as,
2
i =k,W,7:,ZD(K,L).

The above equations may be considered as the transform pairs for achieving a bottom

realization.

Let us now set up a spatial representation of the notations that will be used in the
ensuing arguments. Consider two scatter points, 7, and 7, located at their respective

distances from the transmitter, T, and the receiver, R. These are shown in the following

diagram.

4

o’}// 7rs

Transmitter, T r Scatter patch

4

Tr

Receiver, R

Figure 2.2 — 2-Point Scatter Geometry

The backward propagation or scattered field in Eq. (2.34) may now be written as

|97, (=, 11 e,
< > B.U< ar arR I\/”ﬂ’R ﬁ’}; Wn(rr)wxb(rR)l//Tb(rr)l//Rb(rR) (2.40a)
Xezko(rr-i-rk—r}-ré)>d2rsd2rg
where
2 2}
B=—? (n2—n) . (2.40b)

(16aR,)* nZ+n?
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We have thus far assumed that the fields vary slowly in range, and over a given

scattering patch the Jl_ amplitude terms also vary slowly. Furthermore, since 7, and
Ty

9, decorrelate rapidly for r, #r; and r; # r, then we may assume that these are the
r

same in the amplitude terms and the locations of evaluation. Hence, the field functions

become independeht of the integral over the scattering patch so that

B _ o .
<|p-l2> ~ ﬁ(ﬁ%(rr)ﬁ% (7, )|2>>< (2.41)
1977, (5, ) 31, (¢ Y| itotrsrpmsioris \ g2, s2.1
] <| o, o | rsd Ty

where 7. =—12—(rr +r), 7, =%(rR +7}) are the mean values of the distances from the

scattering patch to the receiver and transmitter.

Introducing difference variables, ry =r, —r, and r; =ry — 1, and assuming the

roughness is isotropic, W,_,,(K,L) =W,_,,(k), we can write the above integral as

]

where k = k? [(cos ¢y +cos @)’ +(sin @, +sin ¢R)2J. We now assume that over the small

aﬂs (x9 }’) 8773 (‘x —X,y=)y )l>e—iko(r;+r;)d2rsd2r; = “‘erWns’ZD (k)ers (2.42)
org org l

—

scattering patch, k> and W, ,p (k) vary slowly so that

(IP-|2> = F—I;-Iwn G W Tl E2W,, 25 ()AL, (2.43)
T'R

and AA, is the area of the scattering patch on the bottom interface. The new geometry

based on the mean distances from the scattering patch is shown in the following figure.
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&,
-1 Scatter patch
AAb

Transmitter, T

Receiver, R

Figure 2.3 — Scatter Geometry Based on Mean Distances from Scatter Patch

To simplify the analysis, we realign the diagram to have the receiver line coincide
with the x-axis, i.e. ¢, =0. Then k, =k =k, cos¢. and k =2k, cos-¢2l. Note that this
wavenumber indicates that the spectrum is evaluated at the Bragg wavenumber. The
following figure shows the re-oriented scatter geometry.

A

O

>
| Scatter patch
AA,

Receiver, R.' T

Transmitter,

Figure 2.4 — Re-Oriented Geometry for ¢, =0

For monostatic scatter then, we have

(Ip"l2> - (1 2y (n:’ s )2 <|l//b|4>Wns,zo (2ky)AA, (2.44)

6mrR,)’ nl+n}
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n

w

where r=7 =7, and |w,|=|wp|=|ws| Now writing nb=nw+An=nw[1+MJ

=n,(1+06) where § <<1, then

~ 2(1—(1+5)j~ , (1= (1+26)) 245
Wt 1140y M 1+(1+20) (2:452)
w b

2 . '
2(1+0)
Furthermore, An=n,—n, = S _% % (€, =6) = CAC .50
C Cy Gy C,.Cy
2 A 2
(An)z =% (Ac)2 = (__C.J ,since ¢, ~ ¢, ~ ¢. (2.45b)
Cc.Cp <o

Finally for the monostatic case, the backscatter field becomes

<’P-|2>=@k—"z*(ﬁf<lml‘>w%,w<2ko>%. | (246)

7R, )2 G

S. Mean Squared Reverberation Pressure Level, RPL

Of interest is the mean squared reverberation pressure level, RPL. Reciprocity of
the one-way fields has been invoked in order to write the solution in terms of the
outgoing field. Using the solution for the incoming field in Eq. (2.46), we can now cast
this into the form of a SONAR equation. We do this by considering the contributions of
the source level, directional characteristics of the source and receiver and the area of
ensonification being captured in that region of the beams. Hence assuming that the field
functions do not vary rapidly over the scattering region and the spectrum of the roughness
is isotropic, the monostatic reverberation pressure level can be expressed as

2

RPL =10log <|p2 |> =SL+DI, + DI, + IOIOg(éR%) ~RL,, , (2.47)

p ref
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where SL is the source level, DI, are the directivity index for the transmitter/receiver

respectively, and AA, is the ensonified area of the bottom interface scattering. The

reverberation loss has also been correspondingly defined as a general function of either
the boundary or the volume. This reverberation loss analysis applied to the boundary,

from the analysis in the previous section, is defined by

2 2
RL, =-10 log{@i—‘;—){(—é—g\} (vl W, 20 (2@} (248a)
0

1 4 k? :
- -1010g[72—<|w,,] >]—1010g{287;_)2(%J W, 2 (2k0)}.

0

If the field has fully saturated statistics, which is often true, then

(') =2{wl) " (2.48b)
Then,
RL, =—201og[1<|y/,,|2>]—101og{ kg ; (EJZW 2D(2k0)} (2.49)
r @z)lc | ™

2
k2 ( Ac
=2TL, —IOIOg{ 3 2;[2 (C_J Was.2n (2K, )} ,

where TL, is the transmission loss from monostatic source/receiver to the scattering

patch at the bottom. Finally, we can write,

0

2
kZ ( Ac
RL, =2TL,-S,, Sb=1010g|:32;2 (-C-—J W,,S_ZD(Zko)] , ~(2.50)

where S, is the full-wave scattering strength due to the small-scale interface roughness,
and W, ,,(2k,) .is the 2-D spectrum of the interface roughness evaluated at the Bragg

wavenumber.
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One should note the following points:

o If the statistics of the interface are homogeneous over a large portion of the
area of interest, the interface reverberation structure is controlled by two-way

transmission loss.

e Because the two-way transmission loss is dominated by forward and
backward propagation over long-wavelength features, the statistics of this

signal should be related to the low spatial wavenumber-space statistics.

The statistical model to be used for the interface roughness will be treated in the

next chapter.

B. VOLUME SCATTERING

Having trudged through the analysis of the bottom interface extensively, the
volume scattering development will take on the same general form with the exception
that the index of refraction varies three-dimensionally in space. We will specifically
‘consider for now only the theoretical development of sound speed variations and the
overall effects on scattering and reverberation. The other element affecting volume

scattering is density variations in the volume, which will not be treated in this thesis but

will be left for follow-on work.

We start with the wave equation in Eq. (2.1) and the index of refraction
perturbations in the spatial scale in Eq. (2.3),
V’p+kin*p=0, (2.51)
and
n® =n (1-H(z-z,)+n’H(z-z,), (252)
as before, but now the bottom (volume) index of refraction varies three-dimensionally in

space, n,(x,y,z). As before in the statistical treatment of the interface spatial variation,

sound speed variations may be defined by (Yamamoto, 1995)
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¢, (%, ¥,2) =, A+ bz +6(x,y,2)), (2.53)

where ¢, is the mean bottom sound speed at the interface, b =& s the normalized

Cho
gradient of the bottom sound speed, and ¢ is the zero-mean random perturbation, i.e.

(5) =0 and

(5(x, y, z),5(x', y/, Zl)> - 'U'[WJ,3D (K, L,M)eiK(x—x')eiL(y“y')eiM(z—z')deLdM , (254)

where W; ., (K,L,M) represents the 3-D power spectrum of the fluctuations.

Again we break this up into long and short wavelength components by having the

random perturbations split as
0=94,+4,, (2.55)
such that Eq. (2.53) now becomes
¢, (x,¥,2) =c,o(1+bz+6,)+ Cyo0, (2.56)
=T, (%,¥,2) + ¢,40,(x,¥,2) .

This can be incorporated into the index of refraction by writing

2 2
njz(&J =% | (2.57a)

¢, | ch(+bz+6,+8,)

2
C, A
z_—°2(1—25s)=nf+ub,

S

where now
W, =242, (2.57b)
and 7, is, as before, the description of the environment including all long wavelenth

component perturbations.

The general description of the environment of Eq. (2.52) is now

A =n’(1-H(z-7%,-n))+A2H(z-7Z,-1n,), (2.58)
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and the effects of interface scatter and volume scatter may be considered separatély. Note
that the long-wavelength contribution to the interface roughness has been included as 7,
into the perturbation, which in turn affects the effective index of refraction. The
den'vatioh now follows exactly as before arriving at the final result for the bottom

interface in Eq. (2.33),

1 10u, 3
=—— d’r, ,
D- 167R, vsﬁ o DirPip@ 75 (2.59)

where the volume integration occurs over the sediment volume scattering region, i.e.

Z>7,+7,.

We now have

Oty _ _p5299 (2.60
or 2n or ’ )

which remains a volumetric quantity, so

2 66
167R, "V or

Taking the same approach as the interface in Eq. (2.34), we see that the mean squared

p.= PP s (2.61)

volume reverberation is then

<|p-|2> ﬂ(n( yacr]) 2 (g .2.2) 9, (xaryl 2Dy @62

p+pr+Rbp:;bp:-;b>d3rsd3r.§,
As before, we write the pressure fields in terms of the field function, ¥ (see Eq. (2.402)),
and argue that they do not change significantly in range within the scattering region.

They do, however, vary considerably in depth, so

(Ip-I)= (87:112 T H (e G W G W W o DAGDACD)  (2630)

<l (P

xyxy

—(x,y ,z)——(x y,2)e

iko (rp+rg=rp=rg) >d2rsd2r;dZdZ
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Recall that 7 =%(rr +7) and 7, =—;~(rR +7;). The inner term is evaluated over

difference variables (as before in Eq. (2.42)) r; and r; to give

f (22

Xy

S(,,z) (xxy y,2-2")

> Bl L e (2.63b)
= j kW5, o5, (K7, L")d%r
where K7, L” and k, are as before, but

Wﬁs‘ZDH (K’ L) = Wfs,s»fiD (K’ L9 - Z,) = J.W(ss&D (K’ L’M)eiM (Z‘Z’)dM (2630)

is the 2D spectrum of the small scale perturbations in the horizontal dimension.

If we now assume that the spectral density is essentially a delta-correlated
function in depth and horizontally isotropic, then we can say that

Wi, 20, (K, L) =Wj, ,p, (k) =Wy 5, (k,0)6(z~-2"), and neglect variations in Wi, 20, OVer

the scattering region. Then, assuming a monostatic geometry,

1 1 5 /. 2
o)y [ [ obr el eoh

2
Xk W op, (k)dzAA
AA being the horizontal area extent of the scattering volume, much akin to the scattering

patch for the interface reverberation development.

For backscatter then,

(Ip-|2> 12 f (nz(r, W (.2 s (r,z)|2> (2.652)

Lt

X /’col’Was,2 p, (2ky)dzAA .
If we now assume that the spectrum W;, 2p, does not change significantly with depth,

then
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2 oo
(-1}~ [ 8n};°RO ) W, 20, (%o )AAZ,,[ ’Sﬁz(r, () Yz (2.65b)

2 .
Finally, we will assume that <ﬁ2(r,z)]1//(r,z)|4>z2<ﬁ(r,z)|l//(r,z)|2> , similar to our

previous treatment of fully saturated statistics.

For the volume reverberation problem, we see that we cannot write the RPL

simply in terms of transmission loss (TL) but instead must integrate over depth the
quantity <ﬁ(r, z)lz//(r,z)|2>2 at each range, r. We shall then use a form of ergodicity and
write

[(acr. 2w, z)|2>2dz ~([ac 2w, z)|2dz>2 , (2.65¢)
and since A and ¥ are based only on the long wavelength components, we will simply

say that we can use (fﬁ(r, 2w (r, z)[zdz)z. Then as in Eq. (2.47), we may write

!Pfl AA
RPL=10log (< ) |= SL+ DI, + DI, +10log — |-RL, , (2.662)
pref RO
where
1 T. 2 k02
RL, =~20log| ~ [A(r, 2w (r,2)[ dz |~ 10log oo Waa0, ko) | (2.66b)
>+,

In the above expression, Wy ,, (2k,) is the 2-D horizontal spectrum of the

volume fluctuations, which is assumed isotropic and independent of depth (as in the
interface reverberation problem) evaluated at the Bragg wavenumber, and the depth
integral extends from the bottom interface downwards to negative infinity. Note that
volume reverberation loss cannot be expressed simply in terms of the two-way

transmission loss as before.
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One should also note the following few points:

® The reverberation loss is not independently influenced by the forward
propagating fields, but is a magnitude scaling or weighting function of the

local index of refraction (positive definite).

 If the statistics of the volume are homogeneous over a large portion of the area
of interest, the volume reverberation structure is controlled by this non-linear,

two-way transmission loss between sound speed structure and acoustic field.

* Because this weighted two-way transmission loss is dominated by forward
and reciprocal propagation over long-wavelength features, the statistics of this
signal should be related to the low spatial wavenumber-space statistics, as in
the case of interface reverberation. We will however expect to see smoother
changes (not abrupt) as compared to the interface reverberation statistics. This
is because the statistics apply non-linearly here providing only the mean-
square positive-definite weighted average of the acoustic interactions with the

environment.

The statistical model to be used for the volume sound speed variations will be

treated in Chapter III.

C. TIME-DOMAIN ANALYSIS
1. Time-Domain Analysis of the Interface

Up until now, the focus has been on CW analysis. The previous analyses for both
the interface and volume have suggested that the structure of the reverberation is due
mainly to the effects of propagation.v To predict the effects of a pulsed signal instead of
the CW signal, the MMPE/MMPEREV model is run over a spectrum of frequencies.
Subsequently, Fourier analysis will give the time-domain structure of the pulse

propagation in time.
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In shallow water, propagation of a signal from a point source will experience
multipath effects. In the time-domain, a scatter patch receiving multipath arrivals will
scatter the received signal at different arrival times. The scattering patch, by reciprocity,
scatters the entire received signal back through the same multipaths (monostatic‘
geometry assumed) that each signal has traversed, leading to the receiver receiving
multiple-multipath signals at different times. Thus, the scattering patch is a source,
producing time-delayed replicas (with proper amplitude weightings) back to the receiver
through the multipath structure of the water column. The geometry of the development

may be represented by the following diagram.

Water surface

Source/
Receiver

Figure 2.5 -Two-way return from a single scattering point

As the source transmits a signal out to the scattéring patch, the scattering patch
receives.signals along all the multipaths (in the figure above, just three multipaths). The
scattering patch scatters each signal and, by reciprocity, these scattered signals follow the
same (three) multipaths back to the source location. Recall that the Green’s function is
the transfer function between the source and the receiver and it does not matter which
direction the propagating wave is travelling. Hence, from a signal point of view, these
may be represented as depicted in Figure 2.6. The total reverberation signal from this

scattering patch would then be the coherent sum of the three lower panels.
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Tignal from Path 1
Path 2

Signal Received at
Patch|

Signal return at
receiver along
Path 1

Signal return W
along Path 2 »

Signal retum
along Path 3

Figure 2.6 — Signal At Receiver Due to Multipath Reverberation

In general, if the receiver and source are not co-located, it may be useful to
consider the arrival times of the same signal from the source and receiver to the same
scatter point/patch. By reciprocity, we may say that the receiver has “propagated” the
signal towards the scatter patch. The geometry has been adapted from Smith and

Cushman (1997) as shown, in Figure 2.7.

Water surface

Source

Receiver

Scattering
Patch
I
1
|

Figure 2.7 — Two-way return from a Scattering Patch

These two propagations may be considered independent and in order to compute the total
reverberant field at the receiver, we may convolve the two field functions as explained by

Smith and Cushman (1997). With an understanding of the pulsed propagation and
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multipaths, the one-way time-domain pressure due to a pulsed signal at the scattering

patch is

Pirirs (1ot) = f[ Vrim (T f)e ® :|-lwtdf (2.67)

where the forward propagated pressure field from the transmitter/receiver at the interface,

D , is specified at range r,, which is the range at the m™ range step. The field-
+T/Rb p g g 1%

function evaluated at the interface at range 7, and at frequency f may be extracted from
the forward propagation of the broadband field computed by MMPE. Notice that in order
to arrive at the required pressure in the time domain, we have to integrate over all the
frequencies, and the above expression is really the Fourier transform of the field in the

frequency domain.

Extending the argument further, the travel time of the two-way pressure field at
the receiver is now the convolution (Smith and Cushman, 1997) of two, one-way fields in -

the time-domain propagated forward. This is

p2-way,b (rm ’T) =J.p+Tb (rm’t)p+Rb (rm T _t)dt ? . (2683)
where we recall from Eq. (2.33) that p,,, and p,, are the forward propagated fields

from the transmitter and receiver to the scattering point evaluated at the bottom interface,
respectively. Note that the forward propagated field from the receiver to the scattering

point is by reciprocity the same as p_p, . We also note that the transmitter and receiver

need not be co-located in depth.

Applying the above approach, we see that the time-convolution of the two field
functions is also the frequency multiplication of these functions in the frequency domain.
Hence, when the forward propagating fields are already available in the frequency
domain, we may then compute the two-way field in the frequency domain from the

interface as

Prways Tus ) = Pty Ty F)Pais s )5 (2.68b)
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where

1 ik r 2.68c
Py (Ts ) =Tl//+n(rm,f)e"° , and ( )

m

1 ikor
p+Rb(rm’f)=TW+Rb(rm’f)e ”,
rm

ata pérticular bottom depth, z,(7,,), at range r,,, and at each frequency. By applying Eq.

(2.67), we can then arrive at the two-way travel time structure of the reverberation loss

(RLp) due to a single. bottom patch, i.e.

P-(s1) = A Py (0 e, (2.684)

where the constant A has been included to incorporate all the other factors needed to

define reverberation loss.

We then continue our propagation through the entire water space of interest and
arrive at the reverberant field at each range step. To see the total field at the receiver, we
coherently sum up all the pressure values from different range segments, 7,,, by matching

up the discrete arrival times, z,,

p-(t,)= i p-(r,»t,) (2.69)

m=1
where p_ is the total pressure at the receiver received at time z,. Note that this matching
requires a coordinated scaling between range step size and time step size, as will be

explained in Chapter IV.

2. Time-Domain Analysis of the Volume

The volume analysis is a 2-D problem in that the reverberation is not directly
proportional to the two-way transmission loss, but requires proper weights through the
entire volume when computing the reverberant field at the receiver. The development

will follow closely that of the previous sub-section on the interface.

Firstly, the reverberant field due to each depth/range point is computed using the

frequency-multiplication of the source-patch and patch-receiver (by reciprocity, the
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forward propagation used) propagating fields, and then applying a Fourier transform to

the time-domain. This is

p2—Wﬂy(rm’z’f)=n(rm’Z)p+T(rm’z’f)p+R(rm,z:f)’ . (2703)
where now the two-way reverberation signal is computed for every grid point of interest
(z >z, always) at a particular frequency, f, and n(r,,,z) is the local index of refraction

at the grid point. The justification for multiplying by the local index of refraction is to

provide the same weighting used in the CW analysis. Fourier transforming gives

Prenay Us 1) = [ Py (Fas 2. e (2.70b)

The 2-D problem may now be reduced to a 1-D problem by performing a vertical

integration to arrive at a single reverberation time-series, i.e.

P-(1t)=B [ Py (102, - @.71)

2>2
which is the coherent sum over all depths below the interface at range step m. Note that
the constant B has been introduced to account for all remaining terms in the reverberation
loss, RL,. We have now ‘collapsed’ the volume in 2-D to 1-D, giving a single set of time-

series which can then be matched and summed,

p.@,)= i p_(r,.t), SN X))

giving a single time-series in p_(z,) which is the two-way time-domain field defining the
" volume reverberation loss at the receiver at time ¢, due to the entire volume in the space

of interest.

In the post-processing analysis to be discussed in Chapter IV, we will implement
the above discussions for both the interface and volume to arrive at the time-domain

analysis.

31




THIS PAGE IS INTENTIONALLY LEFT BLANK

32




III. GENERATING REALIZATIONS - IMPLEMENTATION OF
THE REVERBERATION PROBLEM IN MMPE

Having developed the theoretical basis for modeling the interface and bottom
variabilities, we now have to define statistical methods or models 'to generate the
interface and sound speed variations. We first developed the theoretical aspects of the
models used for generating both the interface and volume perturbations, then
implemented the algorithms in MATLAB to enable checking of the theoretical
developments before integrating them as functions into the MMPE model (Smith, 2000)
written in FORTRAN 95. Much of the theoretical development for generating
perturbations to the interface is based on the work of Goff and Jordon (1988) while the

model for the volume is based on Yamamoto’s (1995) work.

We should note that generating good realizations would form an important first
step in the effort to model shallow water reverberation and their effects on sound
propagation. Of particular importance are the “tweaking” that must be afforded in root-
mean-square values when generating these realizations so that we are able to study the

effects of different bottom undulations and sediment types.

A. SPECTRAL DESCRIPTIONS OF BOTTOM VARIABILITY
1. Interface Roughness (Spatial Perturbation)

From Chapter II, we have seen that the interface effects can be separated into both
long- and short-wavelength fluctuations. We have principally neglected the short
wavelength components in the forward propagation problem. Since the interface

roughness is essentially 2-D, we can assume a 2-D interface spectrum of the form

Wy 2 (k) =—F 57 k=K +, @3.1)
A+L,, k) 72
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where L, 1is a correlation length scale, S, is a spectral exponent, and k, is the

corr

horizontal spatial wavenumber vector. Note that for &, >> %

corr

-8,
WﬂS.ZD (kr >> Lcérr) - kr ’ (32)

The normalization factor i is defined in terms of the root-mean-square (rms) roughness

o’ by requiring

27 [ W, ok k,dk, =57, » (3.3)
0
which leads to
1
U= Z(%—l)azﬁm. (3.42)

Note that &, is the horizontal component of the wavenumber, and the 2-D spectrum,

W, 2p» s assumed isotropic (independent of direction).

For this description, the exponent B, is constrained by

2<B,<4. (3.4b)

Consistent with previous reverberation work by Goff & Jordan (1988) on a rough

interface, we shall assume a fractal character with f=3.5.

For the scattering amplitude, we may simply evaluate W,.2p(k,) at the Bragg

wavenumber, k, = 2k,. However, for the long-wavelength interface roughness, we need
the 1-D spectrum along the x-axis, W, _,,(K). We do this by taking the 1-D transform of

W, .p(K,L) along the slice y =0,

W, 10(K) = IWnS,zo(K,L)dL . (3.5a)
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In cylindrical coordinates, we have

W, (k,)dk, (3.5b)

r; k
W, p(K)=2 f _kJ_-_?
B, 1

=yo’L,, (1+L K*) 22,

corr

. (%—1}%%){%_3 (350
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We now have to transform a random realization of the corresponding 1-D

where

amplitude spectrum which has been scaled by a random amplitude and phase. In other

words, we define the realization as

n(x) = [, 1o (K)e™dK (3.62)
where

S, (K) =W, ()2 AR )™, | (3.6b)

Ns
and A and @ are random numbers for all values of K. Since the complex amplitude of
each wavenumber component, Ae", should exhibit-a normal distribution, the rahdom

phase of each component can be obtained from

6 = 2m,, (3.7a)
where r is a uniformly distributed random variable in the interval [0,1]. The magnitude
A, however, exhibits a Rayleigh distribution. Because we are in fact generating a
realization of the power spectrum, we must consider the magnitude-squared, which has a
negative exponential distribution. The random amplitude of each wavenumber

component is then obtained by
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A=,-In(r), (3.7b)

where r; is another independent, uniformly distributed random variable in the interval
[0,1].

In practice, we could simply use

P (3.82)
Wﬂs.ID (K) = (1+ Liarer) 22
and rescale the result by its rms value, i.e. ——L(xl]-— , or we could simply say
20\
()
By 1 (3.8b)

o= 2,7

where L, and B, had to be specified. This was the generic spectral model used in

corr

generating the realizations first in MATLAB and then for implementation in the MMPE

model.

2. Volume Sound Speed Fluctuations

Unlike spatial variations of the interface, volumetric variations are generally 3-D
in nature. We will now treat the generation of volumetric variations through spectral
realizations as in the interface. The sediment volume sound speed perturbations may be

modeled by a 3-D volume spectra (Yamamoto, 1995) given by
? &
Ws 3D(K,L,M)='B‘STM1(A2(K2+L2)+M2)'ELI (3.9
3 V1

. . a, a, .
where B is the spectral strength constant, [, is the spectral exponent, and A =—=2 == is
aq

the horizontal-to-vertical aspect ratio describing the anisotropy of fluctuations in the

sediment. We shall assume the major axis corresponding to M is aligned with the vertical,

thus we neglect any “dip” angle in the structure. M is thus the vertical wavenumber.
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From Yamamoto’s findings, we shall assume the following values:

ﬁa ~2,
B~5x10*, (3.10)
A~5.

This should produce a relative velocity variance of ~10™. Also note in this form that we

really assume K = hk_where hy =1m is simply a reference length so that K, L, M are

unitless and units of Wj_,, do not depend on B.

Recéllidg Eq. (2.66b), in order to evaluate the scattering due to the volume
perturbations, we need a representation for the volume spectra in the 2-D horizontal

plane. Hence for our reverberation computations, we have

Wy, 25, (K, L) = Wy 3 (K, L,M)dM . (3.11)

Note that we are effectively evaluating the 3-D spectra at a single depth, since it is delta-

function correlated. Substituting Eq. (3.9) into (3.11), we obtain,
Wy, 20, (K, L) = [Wy 1 (K,L,M)dM (3.12)

LB "fBT[AZ(K2+L2)+M2T%"dM
0 .

Bl
2 5
6AB«/_[ sy pas 2 2
2

131
2
For B5 =2, Eq. (3.12) can also be shown to reduce simply to

ZI:BI[AZ(K2+L2)+M2]_2dM | - 6D
0

Ws, 2, (K, L) =

B )
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For the values of B and I in Eq. (3.10) chosen, this reduces to

3
W20, (K, L) = Q’(Kz + 17 )_5 (3.14a)

where

a=2L _s5410° (3.14b)
2A

Note that the above provides the 2-D horizontal spectrum which is needed to
evaluate the reverberation. However, to compute the forward propagation, we need the 2-

D vertical spectrum in the (r,z) plane. In other words, we will now perform the

integration cross-range at y =0, giving

Wy, 20, (K. M) = [W; (K, L M)dL (3.15)

ﬂ;’:B T[Az(K2+L2)+M2T(ﬁ5;2)dL.

—o0

For B; =2, this in turn reduces to

3
Wi, .20, (K, M) =%[A2K2 +M?] 2 (3.162)
| 3
—a/25K2 + M2]
where
o =1.25%x1073. (3.16b)

To generate 2-D vertical volume fluctuation realizations, we do essentially the
same thing as in the case of the interface. Since we are looking at sound speed

perturbations, we define a realization as

cod(x:2) = [[ S5, 20, (K, M)e™ ™ dKdM (3.172)
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where

Ss, 20, (K M) = [Ty, 1, (K MOP2 AR, M)ePE. (3.17b)

Notice that since we have treated sound speed perturbations in the volume in the vertical,

we really are generating a series of vertical realizations at each range step.

In similar fashion to the interface, we define the 2-D random phase variations as

O(K,M)=2m(K.M) , (3.182)
where 7(K,M) is now a matrix of uniformly distributed random numbers in [0,1], and

the amplitude variations are

A(K, M) = [-In(r,(K,M)) , (3.18b)

where r,(K,M) is another matrix of uniformly distributed random numbers in [0,1]. In

practice, we use

bs_
Wy o, (K, M) o< (2K + M7 2, (3.19)
where A and f; are to be specified in generating the realization. The final result for the

volume perturbation is then rescaled by the desired rms value.

3. Spectral Filter

We must note that both the interface and volume realizations will need to be
filtlered at low and high wavenumbers in order to reduce edge effects, which will
introduce additionai unwanted spectral components. The filter is also used to extract the
pertinent portions of both the interface and volume spectra for creation of the long-

wavelength realization affecting the forward propagation.

At the low end, we can assume scales greater than 500m are known. As such,

27 (3.20a)
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At the high end, we should compute up to about the acoustic wavelength, so

b o~k =2 (3.20b)

max CO
which will depend on our frequency of calculation. In a broadband computation, ¢, will

be our center frequency.

B. IMPLEMENTATION OF THE INTERFACE AND VOLUME
SPECTRAL DESCRIPTIONS IN MMPE
As the MMPE is well documented (Smith, 2000), a quick run-through will be
afforded in order to understand the integration of the spectral perturbation model into the
MMPE. However, before any implementation was possible, MATLAB was used to test

the model and its algorithm.

1. Description of MMPE

The Nx2D MMPE model (Smith, 2000) is based on the split-step Fourier
algorithm developed in the UMPE model (Smith and Tappert, 1994) written in
FORTRAN ‘95. MMPE generates the environmental propagator, U,p, in a subroutine
called “ENVPROP” using the bottom bathymetric and sound speed data. These data
points are interpolated to fit the depth points being computed at each range step.
ENVPROP is subsequently called at each range to generate the propagator variations due
to a range-dependent environment specified in the input files. In the case where there are
perturbations, the program is ‘forced’ to think that it is in a range-dependent

environment.

Several input files are used to specify pertinent input parameters, most important
of all being the file named “pefiles.inp.” In there, several input filenames are specified,
one each for the source parameters, sound speed profile(s), bathymetric data set(s),
bottom properties (like shear and compressional sound speeds, etc.), a sub-layer
bathymetry, and the sub-layer properties. A total of seven input files are used for running

MMPE simulations.
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2. FORTRAN & MATLAB Implementation of Perturbation
Models
Before actual implementation of Egs. (3.8b) and (3.19) into the MMPE’s
FORTRAN code, MATLAB was used to code up and test the algorithm and effects of
generating different roughness and perturbation rms values. These were proven
successful, with the expected spatial and sound speed perturbations modeled effectively.
A “tweaking” factor for each type of perturbation was used, namely the rms roughness

and the rms sound speed variations, to allow observation of these perturbations.

Subsequently, these algorithms were translated and implemented into the MMPE,
now renamed “MMPEREV.” In MMPEREYV, two additional subroutines are called
within the subroutine “ENVPROP1” to introduce perturbations. “ZBGEN” introduces the
spatial perturbation to the bottom bathymetry at each range step while “DCGEN”
introduces the sound speed perturbation to the volume at each depth grid point and range
step. ENVPROPI is then made to think that a range-dependent case is present simply
because the perturbations cause irregularities in depth and sound speed, causing the

program to call ENVPROP at each range step.

A random number generator was used in FORTRAN to provide the uniformly
distributed random numbers in the range [0,1]. Each time the random number is required,
a series is generated. However, each time the compiled MMPEREV program is started,
the same seed is used by FORTRAN so that the same set of random numbers are
invoked. Thus, the same sequence of random numbers is used for each run, allowing for
controlled analysis of the results. This is described later. Later implementations to
MMPEREYV will allow for the generation of a random seed in order to effectively model
truly random fluctuations to the intended data set. Some results of the controlled analysis

are seen in the next sub-section.

3. Results of Varying RMS Values to Perturbations

We now present some results from the random fluctuations to bottom bathymetry

in range by varying the root-mean-square values of the interface spatial perturbations.
41




interface rms roughness: 1m

1 T T 3 T T L) T T
0
Water surface
501 E
E
£
2100
o
150 b
200 i 1 L 1 1 1 1 1 1
0.5 1 1.5 2 25 3 3.5 4 4.5 5
Range, km
Interface rms roughness: 5m
T T T T T T T T T
0
Water surface
50 : E
E
3
100 WMMW
3
150 -
zm 1 I3 1 1 L 1 1 1 L
] 0.5 1 15 2 25 3 3.5 4 45 5
Range, km

Figure 3.1 — Plot of Interface Roughness of Different rms Values
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Figure 3.2 — Plot of Interface Roughness of Higher rms Values
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From Figure 3.1 and Figure 3.2, increased rms roughness is seen as the root-
mean-square values are increased. Tfle longer wavelength perturbations also become
more distinct. A cursory survey of shallow water areas, especially in the East China Sea
where the ASIAEX experiment will be conducted, reveals that the long wavelength

components are relatively small. Hence, an rms value of 1m was selected.

Effects of tweaking volumetric root-mean-squared perturbations to the sound
speed follows. The mean bottom sediment sound speed selected was 1700 m/s, which is
normal for a sand/mud layer.

Sound Speed Profile Data Over Depth & Range, (m/s), Volume Perturbation: 5m/s

1710

1650

1640

o 05 15 2 25 3 85 4 45
Range (km)

Figure 3.3 — SSP Data with Volume Sound Speed Perturbation of 5 m/s
and Interface Perturbation of 1 m
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Sound Speed Profile Data Over Depth & Range, (m/s), Volume Perturbation: 16m/s
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Figure 3.4 — SSP Data with Volume Sound Speed Perturbation of 15 m/s
and Interface Perturbation of 1 m

Sound Speed Profile Data Over Depth & Range, (nVs), Volume Perturbations: 25m/s
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Figure 3.5 — SSP Data with Volume Sound Speed Perturbation of 25 m/s
and Interface Perturbation of 1 m
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Apparent from Figure 3.3 through Figure 3.5 is the increasing contrast in the sound speed
profile for an increasing sound speed rms perturbation when comparing them .
qualitatively. While it is not likely that the sediment laye;' is homogeneous, as in Figure
3.3 (rms perturbation being 5 m/s), it is not unimaginable that the sound speed profile can
vary considerably due to inhomogeneities and mixture of different sediment types. A
median sound speed perturbation of 15 m/s (Figure 3.4) was finally used for the follow-

on analysis. Notice also that the interface rms roughness used was 1 m.
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IV. POST-PROCESSING IMPLEMENTATIONS IN MATLAB AND
SIMULATION RESULTS

The second and final step in our modeling efforts was the development of post-
processing routines to extract the relevant data from two, one-way propagation data sets
generated by MMPEREV (see Chapters II and III) and then compute reverberation and
perform signal analyses on the derived data. We will also see that the time-domain
convolution of the two ohe—way field functions will give the time-domain reverberation
‘structure received for.both monostatic and bistatic setups. Routines were written to
perform signal processing on these reverberation data sets. Specifically, this chapter will

expand on the work done to derive the following:

e reverberation loss for broadband signals (time-series) and CW signals (range-

series);
e vertical correlation and peak correlation computation; and

. spectral analyses.

We saw from Chapter II, Sections B and C that a scaling or normalization due to
the wave scattering strength is needed in order to arrive at the reverberation loss.
Howevef, we will not attempt to introduce any scaling here, as these normalization
factors are assumed to be constants (see Eqs (2.50) and (2.66b) for CW analyses, and
Eqgs. (2.68b), (2.68¢c) and (2.71) for time-domain analyses).

Discussion of the reverberation computation cannot be made without first
defining the geometrical and environmental setup of the modeling effort. Of interest was

the particular configuration and environmental parameters likely to be used in ASIAEX.

~
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A. MODELING ENVIRONMENT AND GEOMETRY

Since the varying spatial properties of the broadband signal are of interest, an
array was typically chosen in collecting field data. Each element of the vertical line array
(VLA) was assumed to be a point source and the array was located vertically in the water
column. The MMPE/MMPEREV model provided as an output the field function for the
entire water column and bottom volume up to a given range. The fluctuations in the
bottom bathymetry and volume sound speed were randomly generated by MMPEREYV as
explained in Chapter III.

1. Multi-static Reverberation Geometry

In the analyses, there was a requirement to develop a geometry able to support
both monostatic and bistatic reverberation computations/measurements. As such, a 16-
element VLA was used in the modeling effort. Figure 4.1 shows the VLA and its
geometry relative to a given scattering patch at horizontal range r. We see that the mean

horizontal distance of the VLA to a small scattering patch is r, in see Eq. (2.43).

20m
L Water Surface

f

[Drawing not to scale. |

[
[ )
[ ]
1»
[ ]
16-element *
vertical line array m :,
(60m long) *
[ J

::4.0m

U—L

“_—T

Mean Bottom =
100m

Figure 4.1 — Geometry of VLA and Scattering Patch
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From Figure 4.1, we see that the 16-element VLA spans the water column from 20 m to
80 m with the array elements located 4 m apart in depth. A single element at 48 m depth
(or element number 8 from the top) was chosen as the source with ‘all 16 elements

receiving the reverberation.

As there was a need to isolate source/receiver pairs, MMPEREV was set to
generate 16 sets of output files using each array element as a reciprocal source and then
propagating the field through the entire space with the environmental and source

parameters specified in the next sub-section.

2. The Environment

The maximum propagation range was selected to be 5 km. In a shallow water
environment, the mean bottom depth was assumed to be 100 m with no mean slope. To
perform broadband as well as CW analysis, a center frequency of 250 Hz was chosen
with a 250 Hz bandwidth divided into 512 discrete propagation frequencies. The
frequency span was from 124.7554 through 374.7554 Hz computed automatically by
MMPEREV. Seven control and environmental input files were required by
MMPE/MMPEREV to perform the computations. In order to properly define the
environment for running the MMPEREV model, there was a need to-define the baseline

features of frequency, depth, grid (depth and range), etc.

In order that the time steps and range steps coincide appropriately for coherent

addition as needed, we start by seeing that in reduced time at the m™ range step, we have
T =t -In “4.1)

where T,, is reduced time, #,, is true time at range step m, r,, is the range, and cp is the

reference sound speed. Hence,
t =T+ 4.2)

Now, true time at 41 is
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¢ =T+lml o It (4.3)
G Co

where Ar is the range step size (not the MMPEREV computation range step size, which
will be notated as &), which leads to

¢ -t =5 @4.4)

m+l m
o

The frequency step is defined by

BW

= , 4.5)
nf -1

Af

where nfis the number of frequencies we would like to compute in a broadband scenario

with BW being the bandwidth selected. The time increment then becomes

a=—L -1 _ 1 (4.6)
nf -1 (nf —1)Af BW

Suppose we want a bandwidth of 250 Hz, a center frequency of 250 Hz, and a

frequency step size of about ¥2 Hz, then selecting

At=— - 4ms, 4.7
250
we get
nf =512, (4.8)
af =220 _ 0491z,
511

Note that nf has to be a radix-2 integer because of the Fast-Fourier Transform (FFT) that
was used to compute spectral components in MMPEREV and in the MATLAB post-

processing.

We now constrain the range step to be an integer multiple of the MMPEREV

computational range step size by defining
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Ar=kxdr, 4.9)
where k is an arbitrary infeger to constrain the relationship with the MMPEREV
computation range step size, dr. By forcing this constraint, we have defined the spatial
resolution of the generated solution to explicitly overlap the temporal resolution. This
will allow us to easily combine solutions from different range steps coherently in the

time-domain.
To resolve time, we also define

AT _ ixar, (4.10)
%
where j is another arbitrary integer to constrain the time-range relationship for the
purpose of computations in MMPEREV. For Ar=4ms, selecting j= k=1 and
¢, =1500m/s , we get
or=6m.

Hence for a given maximum range of 5 km, the number of range steps to be computed is

nr = 50600 ~ 833 4.12)

in MMPEREV. Note that the maximum computational range will then be
Toa =4.998km.

Finally, we select the number of total computational depth points to be 256, which
would also determine the FFT-size for the split-step Fourier algorithm, also a radix-2
integer. This provides a vertical spatial resolution for computation of roughly 3 m. The
following table summarizes the environmental parameters used in the modeling in
MMPE, noting that much of the parameters used for the bottom and deep-bottom

properties were assumed.
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Filename/Parameter Value Remarks
Main Control File: pefiles.inp
Number of depth points 256 Radix-2 integer required
Minimum depth Om
Maximum depth 400 m
Number of range steps 833
Minimum range Om
Maximum range 5.0 km
Range step size 6 m
Maximum computed depth 400 m
Reference sound speed 1500 m/s
Source File: pesrc.inp ,
Source depths Varying Array elements at 20, 24, 28, 32,
36, 40, 44, 48, 52, 56, 60, 64,
68, 72, 76 and 80 m depths.
Center frequency 250 Hz
Frequency bandwidth 250 Hz
No. of Frequencies 512 Radix-2 integer required
Sound Speed File: pessp.inp
Water column sound speed 1500 m/s Range independent
No. of SSPs 1
Bathymetry: pebath.inp
Mean bottom depth 100 m Range independent
No. of depth points 1
Bottom properties: pebotprop.inp
Bottom sound speed 1700 m/s
Sound speed gradient 0
Relative density 1.0 No density variations
Compressional attenuation 0.2 dB/km/Hz
Shear speed 0 Not modeled
Shear attenuation 0 Not modeled’
Deep Bottom Bathymetry: pedbath.inp
Depth 3000 m
Deep Bottom Properties: pedbotprop.inp
Deep bottom sound speed 2000 m/s
Sound speed gradient 0
Relative density 3.0 No density variations
Compressional attenuation 0.25 dB/km/Hz
Shear speed 0 Not modeled
Shear attenuation 0 Not modeled
RMS Perturbations (input to MMPEREV
during run)
Intciface lm As explained in Chapter III
Volurie 15 m/s

Table 4.1 - MMPEREYV Input Environmental Properties

52




3. MMPE and MMPEREY Runs

With the propagation environment specified, MMPEREV was setup to make 16
runs, each for a different source depth from 20-80 m at 4 m increments in depth. The
ability to propagate the same signal out from the various receivers to the scattering patch
is based on feciprocity as explained in Chapter II, and using Eq. (2.68b) we are able to
arrive at the reverberant field. As such, 16 output binary files for the configuration above
were computed and stored. In order to make comparisons with the unperturbed ‘data',
MMPE was also setup to make 16 runs for the same array element depths based on the

same environmental conditions shown in Table 4.1. The following table summarizes the

filenames used.

Receiver | MMPEREYV Output File | MMPE Output

/Source (perturbed data) File (unperturbed

Depth data)
20m peoutzbrmsldcrms15s20.bin peouts20.bin
24m peoutzbrms1dcrms15s24.bin peouts24.bin
28m peoutzbrms1dcrms15s28.bin peouts28.bin
32m peoutzbrmsldcrms15s32.bin peouts32.bin
36m peoutzbrms1dcrms15s36.bin peouts36.bin
40m peoutzbrmsidcrms15s40.bin peouts40.bin
44m peoutzbrmsldcrms15s44.bin peouts44.bin
48m peoutzbrmsldcrms15s48.bin peouts48.bin
52m peoutzbrms1dcrms15s52.bin peouts52.bin
56m peoutzbrms1dcrms15s56.bin peouts56.bin
60m peoutzbrms1dcrms15s60.bin peouts60.bin
64m peoutzbrmsldcrms15s64.bin peouts64.bin
68m peoutzbrmsldcrms15s68.bin peouts68.bin
72m peoutzbrmslderms15s72.bin_| peouts72.bin
76m peoutzbrmsldcrms15s76.bin peouts76.bin
80m peoutzbrms1dcrms15s80.bin peouts80.bin

Table 4.2 -MMPEREV/MMPE Output Files

We can, from a single CW run of MMPE and MMPEREV, make qualitative

comparisons of the effects of the interface and volume perturbations.

53




0.5 1 15 2 3 35 4 45 5

25
Range (km)

Figure 4.2 — Transmission Loss (dB re 1 m) with No Perturbation,
Source: 48 m, Frequency: 250 Hz
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Figure 4.3 — Transmission Loss (dB re 1 m) with Perturbation,
Source: 48 m, Frequency: 250 Hz
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When the perturbation was introduced, the structure in Figure 4.2 was disrupted as shown
in Figure 4.3. The dispersed penetration into the volume is also apparent. In the next few
sections, we will discuss the post-processing implemented to compute reverberation,

vertical correlation, and spectral analysis.

B. POST-PROCESSING 1~ REVERBERATION (MATLAB
IMPLEMENTATION)

Recall that in Chapter I we derived the CW reverberant field for a scattering
patch due to the interface and volume in Egs. (2.33) and (2.61), respectively. In order to
arrive at the reverberant field at the receiver due to a co-located or displaced source, we
had to find the interactions of these fields over the entire scattering area. We will also
perform broadband and CW computations by utilizing the same output from MMPEREV
set to run on the various geometrical configurations for the VLA described in the
previous sub-section. Again, we were able to separate the bottom interface and bottom
volume analyses because of their different perturbations. The separate analysis also

afforded closer discrimination of the structure of one independently of the other.

The source was located at 48 m depth, which was in the vicinity of the center of
the water column. Each of the array elements (including the 48 m array element) were
then treated as. independent receivers. Each of the output files from MMPEREV and
MMPE could be paired with the output file for the 48 m source depth binary files for
computation. Naturally, the 48 m source and 48 m receiver files were the same binary
file, meaning a monostatic geometry while the other transmitter/receiver pairs reflected a

vertical bistatic geometry.

Both perturbed and unperturbed data generated using MMPEREV and MMPE,
respectively, were analyzed to provide useful comparisons and further analyses. We will

also show the results for each analysis performed.

1. Two-way Mono/Bistatic CW Reverberation Analysis

For the interface, we have from Eq. (2.33) and subsequently in Eq. (2.43),
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<|P-|2> = %Ivfn o O 2T, 25 (R)AA, (4.13)

This 1s simply proportional to the magnitude-squared of the forward and backward
propagated field functions. As the perturbation spectrum and other field constants are
generated by MMPEREV, the MATLAB post-processing that computes the CW
reverberation is just the multiplication of the magnitude-squared field functions with

cylindrical spreading,

W (| We ()] (4.14)

AN S

and the interface reverberation loss (RLp) is then

RL, (r)=A-20 Iogl:WJ , (4.15)
r

where A is a constant which accounts for the other parameters in Eq. (2.50).

The volume was also treated as described in Eq. (2.66b) and the volume

reverberation loss may be written as

RL,(r)=B- 2010,{% j A(r, D (r, D (7, z)|dz:| , (4.16)

where B is another constant which accounts for the other terms in Eg. (2.66b). Using now
the same 16 sets of results from a single MMPEREYV and another 16 sets of results from
the MMPE runs, we post-processed the field function information to arrive at the CW
interface and volume analyses. We have selected the minimum, center and maximum
frequencies for analysis. The MATLAB files written to post-process the
MMPEREV/MMEPE output files to arrive at the CW analysis are given in Table 4.3. The
output from each run of peout2way_bistat_r.m was saved as a MATLAB data file so that
the data set could be loaded into the MATLAB workspace without having to re-process
the MMPEREV/MMPE output binary files. The filenames saved are listed in Table 4.5.
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MATLAB Post-Processing Files
Description

Perturbed Data
Processing Files

Unperturbed Data
Processing Files

Binary file data extractor: Opens both source and

peoutl_bistat_r.m

peoutl_bistat_np_r.m

receiver binary files (output from MMPE/
MMPEREYV) and all modeling data. Stores
them on the MATLAB workspace.

Interface and Volume Reverberation loss
Computation: Extracts field data source and
receiver files at selected frequencies.
Computes the two-way reverberation loss for
the interface and volume as described above.
Extracts field data at fuin, frenters 204 frngs.

peout2way_bistat_r.m

peout2way_bistat_np_r.m

Table 4.4 - MATLAB Filenames Created for CW Reverberation Analysis

Receiver Interface Volume Interface Volume
Depth Perturbed Data | Perturbed Data | Unperturbed Data | Unperturbed Data

Ouput Ouput Ouput Ouput
20m bistat4820int_r.mat | bistat4820vol_r.mat | bistat4820int_np_r.mat | bistat4820vol_np_r.mat
24m bistat4824int_r.mat | bistat4824vol_r.mat | bistat4824int_np_r.mat | bistat4824vol_np_r.mat
28m bistat4828int_r.mat | bistat4828vol_r.mat | bistat4828int_np_r.mat | bistat4828vol_np_r.mat
32m bistat4832int_r.mat | bistat4832vol_r.mat | bistat4832int_np_r.mat | bistat4832vol_np_r.mat
36m bistat4836int_r.mat | bistat4836vol_r.mat | bistat4836int_np_r.mat | bistat4836vol_np_r.mat
40m bistat4840int_r.mat | bistat4840vol_r.mat | bistat4840int_np_r.mat | bistat4840vol_np_r.mat
44m bistat4844int_r.mat | bistat4844vol_r.mat | bistat4844int_np_r.mat | bistat4844vol_np_r.mat
48m bistat4848int_r.mat | bistat4848vol_r.mat | bistat4848int_np_r.mat | bistat4848vol_np_r.mat
52m bistat4852int_r.mat | bistat4852vol_r.mat | bistat4852int_np_r.mat | bistat4852vol_np_r.mat
56m bistat4856int_r.mat | bistat4856vol_r.mat | bistatd856int_np_r.mat | bistat4856vol_np_r.mat
60m bistat4860int_r.mat | bistat4860vol_r.mat | bistat4860int_np_r.mat | bistat4860vol_np_r.mat
64m bistatd864int_r.mat | bistat4864vol_r.mat | bistat4864int_np_r.mat | bistat4864vol_np_r.mat
68m bistat4868int_r.mat | bistat4868vol_r.mat | bistat4868int_np_r.mat | bistat4868vol_np_r.mat
72m bistat4872int_r.mat | bistat4872vol_r.mat | bistat4872int_np_r.mat | bistat4872vol_np_r.mat
76m bistat4876int_r.mat | bistat4876vol_r.mat | bistat4876int_np_r.mat | bistat4876vol_np_r.mat
80m bistat4880int_r.mat | bistat4880vol_r.mat | bistat4880int_np_r.mat | bistat4880vol_np_r.mat

Table 4.5 — Processed Output Data Files in CW Analysis

CW Analysis Results

A typical CW reverberation loss plot shows a 20logr (two-way cylindrical

spreading) drop in range. Figures 4.4 and 4.5 show the interface and volume

reverberation loss for a source depth of 48 m, receiver depth of 40 m and frequency of

250 Hz. In all cases, the constant scaling parameters A and B were set equal to zero. With

the same source and receiver depths and at the same center frequency, we were able to

observe finer structures in the interface reverberation (Figure 4.4) compared to the

volume reverberation plot (Figure 4.5). This was because multiple incoherent
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multiplications were performed at all depths and then summed vertically in order to
arrive at the mean squared RPL at the receiver due to the volume. Note that all data sets
show very little energy interacting with the interface or volume at very short ranges, i.e.

<0.1km . This is due to the wide-angle limitation of the parabolic approximation.

Source depth:48m, Recsiver depth:40m Frequency 250Hz
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— Interface reverberatlon loss
— 20Iog r drop off
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Figure 4.4- Interface Reverberation Loss for Two-Way Transmission With Perturbation

Source depth:48m, Receiver depth:40m, Frequency: 250Hz
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Figure 4.5 — Volume Reverberation Loss for Two-Way Transmission With Perturbation
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A comparison between perturbed and unperturbed data was also done. Figures 4.6
and 4.7 show the difference (perturbed RL minus unperturbed RL) to see the fine-scale
structures due to the introduction of the perturbation. Apparent in these plots are

repeating structures at about every 0.5 km for ranges beyond about 2 km.

(Perturbed - Unperturbed) Source Depth: 48m, Recelver depth: 40m, Frequency: 250Hz
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Range (km)

Figure 4.6 — Interface Reverberation Loss Difference Vs Range
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(Perturbed — Unperturbed) Source depth: 48m, Receiver depth: 40m, Frequency: 250Hz
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Figure 4.7 - Volume Reverberation Loss Difference Vs Range

Figures 4.8 and 4.9 show the interface and volume reverberation loss,
respectively, across depths plotted against range for the center frequency of 250 Hz. It
was apparent that the interface reverberation showed more structure while volume
reverberation seemed more ‘blotchy’ and revealed little structure. This smudging of data
was manifest of the multiple incoherent (magnitude) multiplications computed before
vertically summing the reverberation in depth. What was apparent however, was the

“20log #* drop in range in both plots.
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Figure 4.9 — Volume Reverberation Loss (dB re 1 m)
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3. Two-way Mono/Bistatic Time-Domain Revei'beration Analysis

Time-domain analyses for both the interface and volume reverberation were
explained in Chapter II, Section C. In essence, multiple frequencies were used to simulate
a pulsed propagation. We will use Egs. (2.68b) and (2.68c) to formulate the MATLAB
implementation for the interface and Egs. (2.70a) to (2.72) for the volume. MMPE was
also run based on the same 16 setups for the VLA to provide comparison data for

unperturbed data. Implementation was completed using MATLAB with the files created

as follows:
MATLAB Post-Processing Files Perturbed Data Unperturbed Data
Description ‘ Processing Files Processing Files
Binary file data extractor: Opens both source Peoutl_bistat.m peoutl_bistat_np.m

and receiver binary files (output from
MMPE/MMPEREYV). Extracts all modeling
parameters and stores them on the
MATLAB workspace.

Interface and Volume Reverberation Peout2way_bistat.m | peout2way_bistat_np.m
Computation: Extracts from binary files the
field function data for source and receiver
and computes the two-way reverberation
loss for the interface and volume as
described above.

Table 4.6 - MATLAB Filenames Created for Time-Domain Reverberation Analysis

The output from each run of peout2way_bistat.m was saved as a MATLAB data file so
that the data set could be loaded into the MATLAB workspace without having to re-
process the MMPEREV/MMPE output binary files. These are listed in Table 4.7.

Additionally, peoutl_bistat.m and peout2way_bistat.m were modified into
function form in order to allow unattended batch processing of the transmitter/receiver
pairs. MATLAB  routines created were: master_run.m, peoutl_bifn.m,
peout2way_biintfn.m, and peout2way_bivolfn.m, where the interface and volume
processing in the original peout2way_bistat.m was split up into two files for processing

efficiency.
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Receiver Interface Volume Interface Volume
Depth Perturbed Data | Perturbed Data Unperturbed Unperturbed
Ouput Ouput Data Quput Data Ouput
20m bistat4820int.mat bistat4820vol.mat | bistat4820int_np.mat | bistat4820vol_np.mat
24m bistat4824int.mat bistat4824vol.mat | bistat4824int_np.mat | bistat4824vol_np.mat
28m bistat4828int.mat bistat4828vol.mat | bistat4828int_np.mat | bistat4828vol_np.mat
32m bistat4832int.mat bistat4832vol.mat | bistat4832int_np.mat | bistat4832vol_np.mat
36m bistat4836int.mat bistat4836vol.mat | bistat4836int_np.mat | bistat4836vol_np.mat
40m bistat4840int.mat bistat4840vol.mat | bistat4840int_np.mat | bistat4840vol_np.mat
44m bistat4844int.mat bistat4844vol.mat | bistat4844int_np.mat | bistat4844vol_np.mat
48m bistat4848int.mat bistat4848vol.mat | bistat4848int_np.mat | bistat4848vol_np.mat
52m bistat4852int.mat bistat4852vol.mat | bistat4852int_np.mat | bistat4852vol_np.mat
56m bistat4856int.mat bistat4856vol.mat | bistat4856int_np.mat | bistat4856vol_np.mat
60m bistat4860int.mat bistat4860vol.mat | bistat4860int_np.mat | bistat4860vol_np.mat
64m bistat4864int.mat bistat4864vol.mat | bistat4864int_np.mat | bistat4864vol_np.mat
68m bistat4868int.mat bistat4868vol.mat | bistat4868int_np.mat | bistat4868vol_np.mat
72m bistat4872int.mat bistat4872vol.mat | bistat4872int_np.mat | bistat4872vol_np.mat
76m bistat4876int.mat bistat4876vol.mat | bistat4876int_np.mat | bistat4876vol_np.mat
80m bistat4880int.mat bistat4880vol.mat | bistat4880int_np.mat | bistat4880vol_np.mat
Table 4.7 — Processed Output Data Files in Time-Domain Analysis
4. Time-Domain Analysis Results

Having discussed the implementations, we now show some results obtained. First,

we looked at the general structure of interface and volume reverberation in the time-

domain at a particular depth chosen arbitrarily as 40 m. Showing very much the same

characteristics, Figures 4.10 and 4.11 depict the time-domain interface and volume

reverberation loss, respectively. The figures provide an understanding of the structure of

the reverberation return of a pulsed transmission with returns lasting for the entire extent

of the calculations both in the interface and volume.
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Source depth: 48m, Receiver depth: 40m
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Figure 4.10 — Time-Domain Interface Reverberation Loss
for Two-Way Transmission With Perturbation
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Figure 4.11 — Time-Domain Volume Reverberation Loss
for Two-Way Transmission With Perturbation
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Time-domain data sets were also used to provide useful comparisons with
unperturbed data sets. To do so, the time axis was ‘converted’ to a range axis by use of

the reference sound speed, c,, such that range = c,Xtime . This produced a range axis

from O to 5 km. The data comparison then proceeded along the same path as that in the
CW analysis in the previous section. We first show sample time-series computed
reverberation-range plots for the interface and volume. Shown in Figures 4.12 and 4.13
are the time-domain reverberation loss plots equivalent to Figures 4.4 and 4.5 for the CW

analyses. Again, the ‘20log r’ drop off was apparent.

Source depth: 48m, Receiver depth: 40m
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Figure 4.12 ~Time-Domain Converted Interface Reverberation Loss
(dB re 1 m) Vs Range, With Perturbation
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Source depth: 48m, Receiver depth: 48m
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Figure 4.13 — Time-Domain (Converted to Range)
Volume Reverberation Loss Vs Range, With Perturbation

Now looking across depths, we observe multipath structures shown in Figures
4.14 and 4.15 due to both interface and volume perturbations, as expected. Spatial
disposition of each source was important in observing the arrival time of the first returns,
most apparent at the receiver element at 20 m depth, while arrivals were earlier at the
receiver element at 80 m depth. This was due simply to the closer proximity of the deep
receiver to the bottom thereby receiving returns earlier than the shallow receivers. No

other structures were apparent from these two figures.
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Figure 4.14 — Interface Reverberation Loss Across Depth Vs Time
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Figure 4.15 — Volume Reverberation Loss Across Depth Vs Time
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5. MATLAB Data Analysis

As a final note on the work done in both data and signal analyses, several
MATLARB files were also written to ensure that the data analysis was complete. These are
found in Table 4.8. In order to derive further value, vertical correlations and spectral
analyses were performed. These are discussed in the next sections.

MATLAB Post-Processing Files Description MATLAB Files

Range-Series Data Processor: Using data obtained from range_series_datanalysis.m
the output file created by peout31_pre_bistat_r.m and
peout31_pre_bistat_r_np.m respectively, this routine
computes and displays reverberation loss and
compares these RLs between perturbed and
unperturbed range-series data.

Time-Series Data Processor: Using data obtained from time_series_datanalysis.m
the output file created by peout31_pre_bistat_r.m and
peout31_pre_bistat_r_np.m respectively, this routine
computes and displays reverberation loss and
compares these RLs between perturbed and
unperturbed range-series data.

Table 4.8 —- MATLAB Routines Created for Data Analyses and Comparisons

C. POST-PROCESSING 2 - VERTICAL CORRELATION & PEAK

CORRELATION IN CW AND TIME-DOMAIN

Having completed CW and time-domain analyses, correlation between the
monostatic (source and receiver co-located at 48 m) reverberation data set with
reverberation data sets from all other receiver depths was performed. The data files saved
from the CW (Table 4.5) and time-domain (Table 4.7) analyses were used to compute the
vertical correlations for both CW (range correlation) and time-domain (temporal
correlation). MATLAB routines were written to perform the vertical correlations. All
vertical correlations are computed relative to a source depth of 48 m. Thus, the
autocorrelation would occur at the receiver depth of 48 m, giving the theoretical
maximum correlation over depth. These were done for both the interface and volume

with and without perturbations. Selected results are shown in this section.
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1. Vertical Correlation in Range & Peak Vertical Correlation

We first looked at CW vertical correlation. Table 4.9 lists the MATLAB files
created to compute the vertical correlations. We have selected a source at 48 m and at the
center frequency of 250 Hz for this analysis. With thé perturbation included, Figure 4.16
shows the vertical correlation for the interface while Figure 4.17 shows that in the case of
the volume. It should be noted that due to the incoherent processing of the two-way
pressure fields, the first 0.5 km doés not accurately reflect the true reverberation loss. ;
Hence, the first 0.5 km has been truncated prior to performing the volume vertical

correlations shown in Figure 4.17.

MATLAB Post-Processing Files MATLAB Files " MATLAB Files
Description (Perturbed) (Unperturbed)
Correlation Computation: Extracted data from | Peout3_bistat_r.m peout3_bistat_r_np.m

Table 4.5 and computed vertical and peak
vertical correlations with the data at source
depth, 48m.

Data Processing: Extracted data from Table 4.5 | Peout31_pre_bistat_r.m | peout31_pre_bistat_r_np.m
and stored workspace variables into an
output data file for future analyses.

Correlation Computation: Computes vertical Peout31_bistat_r.m peout31_bistat_r_np.m
and peak vertical correlations as in
peout3_bistat_r.m and
peout3_bistat_r_np.m respectively, but uses
output file created by
peout31_pre_bistat_r.m and
peout31_pre_bistat_r_np.m respectively.

Output filename created by Bistat_deprng_data.mat | bistat_deprng_np_data.mat
peout31_pre_bistat_r.m and
peout31_pre_bistat_r_np.m respectively

Table 4.9 - MATLAB Filenames Created for Computing Vertical Correlations
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Source Depth: 48m, Frequency: 250Hz

Relative Depth (m)
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Figure 4.16 — Vertical Correlation of Interface Reverberation Loss
in Range Vs Relative Depth

Source Depth: 48m, Frequency: 250Hz

Relative Depth (m)

0
Range Lag (km)

Figure 4.17 — Vertical Correlation of Volume Reverberation Loss
in Range Vs Relative Depth (first 0.5km truncated)
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It was apparent that finer scale structures were present in the interface, but the volume
showed strong correlation throughout depth for much of the computations in range up to

about 3 km due to the smoothing effect of the incoherent processing of the CW signal.

Peak correlation values were also extracted from the above vertical correlation
structures in order to see how rapidly the signal decorrelated over depth. As would be
expected from the above analysis, the volume would tend to stay more correlated over
depth while the interface showed more decorrelation over depth. However, even the
interface reverberation loss remained quite correlated with minimum correlation values
down only about 1 dB. This is also due presumably to the incoherent processing involved
in the derivation of the mean squared RPL. Figures 4.18 and 4.19 show a comparison of
the peak vertical correlations between perturbed and unperturbed data. While it is
apparent that the volume reverberation of the CW signal tends to decorrelate slower than
the interface in both scenarios, the addition of the perturbations does not appear to affect

the vertical correlations significantly.
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Figure 4.18 — Peak Vertical Correlations (dB) of
Perturbed Data Over Relative Depth
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Source Depth: 48m, Frequency: 250Hz
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Figure 4.19 — Peak Vertical Correlations (dB) of
Unperturbed Data Over Relative Depth

2. Vertical Temporal Correlation & Peak Vertical Temporal
Correlation

As wifh the CW signals, MATLAB files were created to compute the vertical
correlations in the time-domain for the broadband signals. These are listed in Table 4.9.
From the results of the vertical temporal correlations and peak vertical temporal

correlations, we obtain Figures 4.20 through 4.23.

Apparent from Figures 4.20 and 4.21 are finer scale structures seen in both the
interface and volume reverberation level. Of importance was the fact that the coherent
convolution done in arriving at the time-domain analysis preserved the coherent time

structures, in contrast to the CW analyses.
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MATLAB Post-Processing Files
Description

MATLAB Files
(Perturbed)

MATLARB Files
(Unperturbed)

Correlation Computation: Extracted data from
Table 4.7 and computed vertical and peak
vertical correlations with the data at source
depth, 48m.

peout3_bistat.m

peout3_bistat_np.m

Data Processing: Extracted data from Table 4.7
and stored workspace variables into an
output data file for future analyses.

peout31_pre_bistat.m

peout31_pre_bistat_np.m

Correlation Computation: Computes vertical
and peak vertical correlations as in
peout3_bistat.m and peout3_bistat_np.m
respectively, but uses output file created by
peout31_pre_bistat.m and
peout31_pre_bistat_np.m respectively.

peout31_bistat.m

peout31_bistat_np.m

Output filename created by
peout31_pre_bistat.m and
peout31_pre_bistat_np.m respectively

bistat_deptime_data.mat

bistat_deptime_np _data.mat

Table 4.10 - MATLAB Filenames Created for Computing Vertical Correlations

Relative Depth (m)

Source Depth: 48m

|

Time Lag (sec)

Figure 4.20 — Vertical Temporal Correlation of
Interface Reverberation Loss Vs Relative Depth

73




Source Depth: 48m
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Figure 4.21 — Vertical Temporal Correlation of
Volume Reverberation Loss Vs Relative Depth

Peak vertical temporal correlations were extracted for the interface and volume
relative to a 48m source, and the results are displayed in Figure 4.22. Similar analysis
was performed on data computed without the perturbations and these results are
presented in Figure 4.23. With the same horizontal scales, Figures 4.22 and 4.23 could be
‘compared to see the effects of introducing perturbations. The perturbations appear to
affect the volume reverberation loss vertical correlation more than the interface
reverberation loss, although the effect is minor in both cases. For both perturbed and
unperturbed environments, the vertical 3dB decorrelation length scale is on the order of a

few meters.
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Figure 4.22 — Peak Vertical Tempofal Correlations
of Perturbed Data
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Figure 4.23 — Peak Vertical Temporal Correlations
' of Unperturbed Data
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D. POST-PROCESSING 3 - SPECTRAL ANALYSES

In this final section, we investigate the spectral content of the reverberation

pressure obtained for both the CW and broadband signals. There was a need to convert
the time-domain into range using the reference sound speed, ¢, like the conversion done
in Section 3.B in the time-domain analysis. As before, comparison with unperturbed data

was also done. MATLAB routines were again written and tabulated as follows.

MATLARB Post-Processing Files MATLAB Files
Description
Computes the Fourier Transform of the CW range_series_signalysis.m

data obtained from the output file created by
peout31_pre_bistat.m and
peout31_pre_bistat_np.m respectively. This
analysis has built within itself a comparison
with unperturbed data already.

Computes the Fourier Transform of the time_series_signalysis.m
Converted Time-Domain data obtained from
the output file created by
peout31_pre_bistat.m and
peout31_pre_bistat_np.m respectively. This
analysis has built within itself, a comparison
with unperturbed data already.

Table 4.11 - MATLAB Routines Created for Spectral Decomposition

Assuming a monostatic geometry, we recall from the analyses in Chapter II and

from Eqs. (4.15) and (4.16) that the interface reverberation loss may be defined as
RL, =2TL, + constants , 4.17)
where
TL, =10log|p_(r)|" = 20logly, (r)|~10log r (4.13)

since, by definition,

4.19
Ip(7) =%Iw(r)l- (4.19)

Hence
RL, = 20logly, (r) —20log . (4.20)

We define the range-reduced reverberation Joss as
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RL,, 4s = RL, +20log r o< 20logly, (r)[" . (4.21)

Now we assume that we can represent the field function in terms of a spectrum,

ie.

lwr, () o< [W(K)e™dK 4.22)

It is possible then that the spectral content of the field can be related to the statistical
characteristics of the perturbations and can thus be extracted with the use of some signal
processing tools. In other words, the spectrum W(K) may be related to the perturbation

spectra.

The main approach was the use of discrete Fourier transforms (DFT) in an

attempt to extract the spectral components of the reverberation data. They are:

e Signal Analysis 1: Power Spectral Density — DFT of the magnitude squared

range-reduced reverberation (i.e. r’x | p_|2 )-

e Signal Analysis 2: Power Ratio Spectral Density — DFT of the magnitude
squared of the ratio of the reverberation (perturbed divided by unperturbed),

2

. Ip—perrurbed
1.€ PE—

9
|p —unperturbed

Recall that the typical reverberation loss observed from the range series (CW)
data for the interface and volume were presented earlier in this chapter in Figures 4.4 and
4.5 respectively. The time-domain reverberation loss data was correspondingly shown in
Figures 4.10 and 4.11. The difference in RL (ratio) between the perturbed and
unperturbed data (CW analysis) for the interface and volume were also shown in Figures
4.6 and 4.7. Figures 4.24 and 4.25 ’show the CW reverberation loss while Figures 4.26

and 4.27 show the time-domain (converted to range) reverberation loss.
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Source depth: 48, Receiver depth: 40m, Frequency: 250Hz

70 T T I T T
. ;[ — Unperturbed reverberation loss
| — Perturbed reverberation loss
BOHM - r e b U e U S -

8

8

N
Q

Reverberation Loss (dB re 1m)
5

8

140 N B SN S L

150 i

25
Range (km)

Figure 4.24 — Interface Reverberation Loss vs
Range Using Range Series Data
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Figure 4.25 — Volume Reverberation Loss vs
Range Using Range Series Data

When using time-series data to perform this analysis, time was converted to range
in order to relate length scales of the reverberation with perturbation scales. It is perhaps
interesting to note that the time-series data showed no appreciable differences between
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the perturbed and unperturbed data sets, in contrast to the CW range-series data displayed

above. The reason for this is currently unknown.
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1. Signal Analysis 1 - Power Spectral Density

The magnitude-squared of the range-reduced perturbed reverberation was

analyzed using the DFT, giving

PSD = DFT{|p [ xr*} (4.23)

where p_ is the reverberation field of the interface or volume. Figures 4.28 and 4.29 show
the normalized power spectrum of the range-reduced interface and volume
reverberations, respectively. Note that these plots are presented with the wavenumber
axis displayed on a logarithm scale in order to elucidate exponential behavior. While
structurally the same, i.e., lower wavenumbers predominating the spectra, strong fine
scale structures were evident in both plots for the perturbed data. This alludes to the
presence of perturbations which may be extracted from the spectra. In the volume plot,
Figure 4.29, the perturbed data distinctly showed less drop-off beyond a wavenumber of

roughly 0.2m’ corresponding to wavelengths smaller than approximately 30 m.
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Figure 4.28 — Normalized Power Spectrum of
Range-Reduced Interface Reverberation (Range-Series)
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Figure 4.29 —~ Normalized Power Spectrum of
Range-Reduced Volume Reverberation (Range-Series)

Figures 4.30 and 4.31 show the results for the broadband signal (after converting
time to range) for the interface and volume. Both fine and large scale structures are
observed. While repeating structures were mostly preserved when the perturbation was

included, the longer scale perturbations may have augmented the spectra.
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Figure 4.30 — Normalized Power Spectrum of Range-Reduced
Broadband Interface Reverberation
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Figure 4.31 — Normalized Power Spectrum of Range-Reduced
Broadband Volume Reverberation
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2. Signal Analysis 2 — Power Ratio Spectral Density

The 'quotient of the perturbed over the unperturbed reverberation data was
magnitude-squared to provide a comparison of the levels. This was then Fourier
transformed in order to reveal any special spectral content. The power ratio spectral
density (PRSD) was then defined as

2
| P- perturbed
2

PRSD = DFT (4.24)

lp ~unperturbed

Figures 4.32 and 4.33 show the spectral components of the ratio between the perturbed
and unperturbed data sets for the CW signal. While it was difficult to make any apparent
observations, the interface reverberation data showed a rather flat spectrum while the
volume reverberation data showed a roll-off at higher wavenumbers. The physical

justification for this is, as yet, unclear.
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Figure 4.32 — Normalized Spectrum of Interface Power Ratio
Using Range-Series Data
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Figure 4.33 — Normalized Spectrum of the Volume Power Ratio
Using Range-Series Data

Finally, we computed the power ratio spectral density based on the time-series
data, as shown in Figures 4.34 and 4.35 for the interface and volume, respectively. These
pldts were consistent with the above CW analysis for the ratio of the perturbed to the
unperturbed data. The interface showed an almost flat spectra while the volume showed a

drop-off with increaasing wavenumber.
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Figure 4.34 — Normalized Spectrum of Interface Power Ratio
Using Time-Series Data
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V. CONCLUSIONS & RECOMMENDATIONS

A theoretical model and corresponding numerical simulation for shallow water
reverberation has been developed for spatial and sound speed perturbations of the bottom
interface and volume, in the context of the parabolic approximation. The main focus in
this thesis has been the use of the MMPE model for predicting the forward and back
propagations, and then developing post-processing routines in MATLAB to compute the

reverberation loss and to perform signal analyses on the derived reverberation.

The development of statistical models to introduce interface and volume
perturbations into the MMPE model were also completed, noting that density variations
to the volume have yet to be included to arrive at a more comprehensive model. This is,
however, notb envisaged to be difficult and will be left for follow-on work. The models
presented here were tested and found to be effective in modeling the perturbations typical
of different types of bottoms and sediment compositions. An rms value of 1 m interface
perturbation and a 15 m/s sound speed variation were used. Most apparent was the effect
these perturbations had on a one-way propagation of the MMPE model. It showed
diffused bottom penetration extending much farther in range with less noticeable effects

in the water column.

Various analyses were conducted for both perturbed and unperturbed
environments in order to establish baselines for which to see the effects of perturbation.
This was done in computing the reverberation losses across a VLA based on a single
source located at range, r=0m, and at 48 m depth. Arrival structures were clearly
discernible due to travel time differences, the shallowest receivers showing later arrival
times. Reverberation levels consistently showed ‘2010g r’ drop-offs regardless of the
presence of perturbation. Correlation across depth was performed and showed that the

interface decorrelated more rapidly than for the volume. This was also true of the
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scenario without perturbations. Thus, the perturbations were not seen to affect correlation

significantly.

The power spectrum of the reverberation and of the ratio of the perturbed to the
unperturbed data were computed. In the power spectral analysis of the volume
reverberation, showed less drop-off for the perturbed data. However, both interface and
volume-perturbed plots showed small and large-scale deviations from the unperturbed
plots, providing evidence of the perturbations. Broadband analysis showed that repeating
structures were preserved while shorter scale perturbations may have augmented the
spectra. The PRSD showed a rather flat spectrum for the interface reverberation data
while volume reverberation showed roll-off at higher wavenumbers. This was consistent

in both the CW and broadband analyses but the justification is not presently known.

In essence, we have analyzed the influence of interface and volume perturbations
on CW and broadband reverberation structure in shallow water. The impact of the -
interface perturbations cannot be really concluded at this time since the spectral analyses
did not provide any observable characteristics. The volume perturbation spectrum
appeared more amenable to extraction via signal processing and should be explored

further.
With the conclusion of this thesis, recommendations for future work are:

e to generalize the Fortran implementation of the perturbation models with truly

random perturbations by incorporating a ‘seed’;

e to develop and implement density fluctuations into the sediment volume and

reverberation theory;

¢ and to perform second and third order signal analyses on the reverberation

data in an attempt to extract information on the perturbation spectra.
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